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Elastic Wave Propagation for Plane Strain Problems 

by the Theory of Characteristics 

I. Introduction 

The phenomenon of transient wave propagation in 
solids has created increased interest in recent years. Solu- 
tions have been sought to wave problems, particularly 
those which arise in fields of geophysics and space tech- 
nology. Some of the geophysical problems of current 
interest include protection from nuclear explosions and 
the detection of underground structures and minerals. 
In space technology, scientists encounter complex wave 
problems associated with meteorite impact on space ve- 
hicles, the impulsive ignition of solid-propellant motors, 
and impact landings of space vehicles. These problems 
generally require the treatment of finite bodies subjected 
to concentrated impulsive loads on one or more of their 
boundaries. Waves generated under these conditions are 
inherently multidimensional. 

tion of two-spatial dimensional wave propagation prob- 

For a wide range of practical cases, multidimensional 
systems can be narrowed down to two-spatial dimen- 
sional waves. However, the solutions that can be obtained 
with existing techniques, even with this idealization, are 
quite limited. In the past, Fourier and Laplace transform 
techniques were the only methods applied to the solu- 

lems in solids. Only few boundary-value problems have 
been solved using these techniques, and then only in the 
case of linear materials (Ref. 1). For example, within the 
last 60 years, researchers have treated the problem of a 
line load suddenly applied to a half-space using trans- 
form techniques, but found it exceedingly difficult to 
perform the numerical evaluation. The primary obstacle 
to these solutions has been the daculty encountered 
in obtaining the inverse transform. As a result, use 
of the transform techniques has been limited to simple 
boundary-value problems. Furthermore, it was shown by 
Chou and Gordon that the Laplace transform technique 
fails in certain regions in the solution domain (Ref. 2). 

Limitations and difficulties in the transform techniques 
encouraged researchers to apply the theory of charac- 
teristics to wave propagation problems. The theory of 
characteristics involves the solution of the basic dynam- 
ical field equations which govern the deformation in the 
medium. These field equations are first-order partial- 
differential equations of the hyperbolic type. Their solu- 
tions are obtained by a conventional method used in the 
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theory (Ref. 3). This method determines the differential 
equations which relate the dependent variables on the 
wave fronts, where discontinuities are assumed to occur 
in the derivatives of the variables. Once these differen- 
tial equations are found, they are directly integrated 
numerically by the finite difference method. Because of 
the direct numerical integration, the theory of charac- 
teristics offers an advantage over the transform tech- 
niques, which require the inversion transform before 
integration can take place. 

The theory of characteristics has proved relatively 
simple in its application to the one-spatial dimensional 
problem and has brought very successful results, par- 
ticularly for the transient state (Ref. 4). Solutions have 
been obtained for materials that are elastic as well as 
nonelastic, homogeneous as well as nonhomogeneous, 
and linear as well as nonlinear (Refs. 5 and 6). 

Since the theory of characteristics has been success- 
fully applied to the solution of one-spatial dimensional 
wave problems in solids, it seems desirable to extend the 
theory to include two-spatial dimensional wave problems 
in solids. The failure to apply the theory of characteristics 
to solve such problems may be due to the inability to 
employ directly the conventional method, in which each 
distinct derivative in the basic dynamical field equations 
is considered to be an unknown. For numerous one- 
spatial dimensional cases, the unknown derivatives are 
equal in number to the basic dynamical field equations 
available, thus making the conventional method appli- 
cable. This is not the case, however, in the two-spatial 
dimensional wave problems, where the number of the un- 
known derivatives exceeds the number of available basic 
dynamical equations. Obviously, the conventional method 
cannot be applied in this case. The motivation for this 
study is the need for a new method by which this type 
of two-spatial dimensional wave problem can be solved 
using the theory of characteristics. 

In his work on surfaces of discontinuity, Hadamard 
developed a theory which presents these surfaces as the 
loci of discontinuities in the dependent variables and 
their derivatives (Ref. 7). In this theory, a surface divides 
a region of space into two parts. A function of space and 
time is considered to be continuous and differentiable 
on each side of the dividing surface, where the function 
and its derivatives may be discontinuous. Hence, this 
dividing surface is the discontinuity surface. Once the 
discontinuity surface affects different particles as it moves 
in a medium, it becomes a wave surface (also known as 

the wave front). In view of this model, kinematical con- 
ditions were derived by Hadamard for the function and 
its derivatives in reference to space and time, respec- 
tively, which are denoted as Hadamard's discontinuity 
relations. Since Hadamard's discontinuity relations were 
derived on a kinematical basis only, they seem to be 
applicable to a wide variety of constitutive equations, 
and the above function may then be replaced by veloci- 
ties and stresses. This work was extended by Levi-Civita 
(Ref. 8) and T. Y. Thomas (Ref. 9). In particular, Thomas 
has done very valuable and extensive work on the sub- 
ject within the last decade. Therefore, it seems expedient 
to employ Hadamard's work on surfaces of discontinuity 
in the effort to develop the new method by which two- 
spatial dimensional wave problems in solids can be solved 
using the theory of characteristics. 

The sections which follow describe these efforts. 
Hadamard's theory is applied to a wave surface across 
which the first partial derivatives of the velocities and 
stresses are discontinuous, while the dependent variables 
themselves are continuous. The discontinuity relations 
are reformulated in order to reduce the basic dynamical 
field equations to a system of dynamical conditions. The 
objective of this analysis is to present the dynamical con- 
ditions as a set of equations equal in number to the 
indeterminate (discontinuous) first partial derivatives. 
From the dynamical conditions, the differential equations 
governing the propagation of discontinuities on the wave 
surfaces are derived. These differential equations are 
referred to as the characteristic equations. 

The characteristic equations are derived with reference 
first to Cartesian and then to cylindrical coordinate sys- 
tems, thus allowing their application to a wide range of 
problems. As a measure of validity, the derived two- 
spatial dimensional characteristic equations must be 
shown upon reduction to contain the well known one- 
spatial dimensional form. 

Finally, the derived characteristic equations are ap- 
plied to the numerical evaluation of two representative 
boundary value problems. In both cases, an abrupt load 
is applied; therefore, special derivation is required in 
order to account for possible discontinuities in velocities 
and stresses across the leading wave front. The first prob- 
lem considered consists of a uniform plane oblique load 
suddenly applied on an infinite flat plate. This problem, 
while one-spatial dimensional, involves two kinds of 
waves, namely, a longitudinal and a shear wave. Since 
the longitudinal and shear waves cause the material par- 
ticles to move in two different directions, this system may 
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be considered a step toward a strictly two-spatial dimen- 
sional problem. The second problem is two-spatial 
dimensional and consists of a line load suddenly applied 
on a half-space. 

The investigation described in this report is confined 
to two-spatial dimensional wave propagation in a linear 
elastic, isotropic, and homogeneous material. 

II. Basic Dynamical Field Equations and the 
Monge Cone 

The basic dynamical field equations which govern the 
deformation in the medium are written below with 
respect to the Cartesian coordinate system. Total differ- 
entials of the dependent variables are then combined 
with the basic dynamical field equations to produce a 
characteristic surface. 

The equations of motion for linear elastic material 
where plane strain is prevalent are 

where 

p = density 

u and w = displacements in the x- and 
z-directions, respectively 

x, z-plane 
uxx, uzz, and uxz = the normal and shear stresses in the 

x and x = Cartesian coordinates 

t = the time dimension 

The constitutive equations for linear elastic, isotropic, 
and homogeneous material in terms of stress-displacement 
relations are 

au 
uzz=A -+- + 2 p -  (2  E) ax 

aw 
u a z = A  -+- + 2 p -  (E E) az 

u x Z = p ( g + g )  

(3) 

(4) 

(5) 

In the theory of characteristics, it is convenient to 
treat first-order partial-differential equations, since they 
present directly algebraic relations among the first partial 
derivatives involved. Also, in many boundary-value prob- 
lems which involve wave propagation, the prescribed 
conditions are in terms of forces or velocities or both. For 
the above reasons, Equations (3), (4); and (5) are differ- 
entiated with respect to time, and the terms au/at and 
aw/at are replaced by U and W, respectively. The U 
and W are velocities in the x- and z-directions, respec- 
tively. The basic dynamical field equations now become 
a set of five linear first-order partial-differential equations 
with five dependent variables, uxx, uZz, a,,, U ,  and W, and 
with three independent variables, x, x ,  and t, as follows: 

In addition to the basic dynamical field equations 
(Eqs. 6 through lo), total differentials for the dependent 
variables are necessary to produce an integral surface 
(a solution surface), as evident from the following: Let a 
function f stand for any of the dependent variables ax=, 
uZz, uXz, U ,  and W, and let f and its first partial deriva- 
tives af/ax, af/az, and af /a t  be continuous in certain 
regions in the medium which occupies the space x, z, t. 
It is known that at each point in the medium, where the 
basic dynamical field equations are defined, there exists 
a Monge cone (Ref. 10). The Monge cone is formed by 
varying the first partial derivatives af/ax, af/az, and 
af/at, which are algebraically related by the basic dy- 
namical field equations. For a surface f = f (x,  z, t)  to be 
an integral surface of the basic dynamical field equations, 
its tangent element should touch the Monge cone at each 
point in the field defined by the equations. The point 
(x + &, z + dz, t + dt, f + df) lies in a tangent element 
to the Monge cone at the point x,z,t,f if 
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(Ref. 10). Consequently, the following total differentials 
must be introduced as 

tions are of the hyperbolic type and their integral surfaces 
are known (Ref. 10) as characteristic surfaces. 

a u  a u  au 
ax an d U = - d x  + - dz + F d t  

a w  a w  a w  
ax az at dW = - dx + - dz + -dt  

dz + dt (13) 
auxx auxz 

at ax ax duxx = - dx + - 

(15) 
auxx auxx auzx dt 
ax an dz + - dux ,=-dx+-  

at  

Equations (6) through (15) are combined to eliminate 
first partial derivatives with respect to time and are now 
presented as follows: 

A characteristic surface starts to form when a point 
Po (xo, zo, to) in the medium in which the dynamical field 
equations are defined is excited by one or more of the 
dependent variables. To show the formation of an arbi- 
trary characteristic surface by its tangent elements for 
an arbitrary point Po (xo, zo, to), the Monge cone with Po 
as its apex is considered (Fig. 1). Since each of the tangent 
elements of the characteristic surface must touch the 
Monge cone at point Po, these elements will form a pyra- 
mid around the cone. The envelope of this pyramid is the 
characteristic surface. The generators of the envelope CO- 

incide with the pyramid along the curves formed by the 
intersection of the tangent elements. These curves are 
known as the bicharacteristic curves. Since the bicharac- 
teristic curves are formed by tangent elements with differ- 
ent orientations, discontinuities may occur in the first 
partial derivatives across the bicharacteristic curves. 
Therefore, the first partial derivatives on the character- 
istic surface are indeterminate. Accordingly, the charac- 
teristic surfaces are surfaces of discontinuity in the first 
partial derivatives of the dependent variables. When 
point Po is excited by given initial conditions which are 
functions of time, the surface of discontinuity is propa- 
gated in the space x,  z, t as shown in Fig. 1, and so are the 

a w  dz auxx aux2 dw indeterminate first partial derivatives along the bicharac- 
teristic curves. The solution surface is then found by the 
propagation of these indeterminate first partial deriva- 
tives from the initial conditions along the bicharacter- 
istic curves. 

au dX au dn auxx auxx dU 
PXdt ax dt ax a;z - P d t  +p--+-+-- 

(16) 

- +-+-- a w  dx 
az P d t  

+p-- 
p z d t  az dt ax 

(I7) 

auzx dx auzx dz a w  au duxx 
ax dt az dt TANGENT ELEMENTS -- 

+ p - +  MONGE CONE ax pan=dt EMBEDDED IN THE 
+-- 

CHARACTER ISTIC 

POINT Po (xor 20, to) 
FORM A PYRAMID 

(18) SURFACE THROUGH A 

auxr dx auxx dz au aw aW dux, 

( 19) 

- -+-- +A- + A -  + 2 p =  =x ax dt ax dt ax ax 
BICHARACTERISTIC 

CURVES ARE FORMED 
BY THE INTERSECTION 

auxx dx auxx dz a u  a w  a u  duxx OF TANGENT ELEMENTS 
WITH DIFFERENT SLOPES + A- + h - + 2p- = - -- ax az ax dt 

(20) 

+-- ax dt 2z dt 
CHARACTERISTIC 

SURFACE IS  THE 
ENVELOPE OF THE 
TANGENT ELEMENTS This system of differential equations will be referred to 

as the dynamical field equations. 

The dynamical field equations (Eqs. 16 through 20) are 
shown in Section V to possess five real and distinct inte- 
gral surfaces. Consequently, the dynamical field equa- 

z 

Fig. 1. Characteristic surfaces and 
bicharacteristic curves 
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The objectives now are first to depict the surface of 
discontinuity as a wave surface and then to establish the 
dynamical conditions for the indeterminate first partial 
derivatives. The dynamical conditions are to be estab- 
lished from the dynamical field equations (16 through 20). 
From the dynamical conditions, a characteristic condi- 
tion is to be found, which should yield the discontinuity 
surfaces and their bicharacteristic curves, along which 
the indeterminate first partial derivatives are propagat- 
ing. Next, the characteristic equations which relate the 
dependent variables along the bicharacteristic curves are 
to be derived. Once these objectives have been reached, 
the propagation of the solution surface can be found 
when a point is excited by given initial conditions. The 
following sections are devoted to these objectives. 

111. Waves as Surfaces of Discontinuity 

Analytical tools are now being sought to treat waves 
as surfaces of discontinuity. The discussion at the end 
of Section I1 described the geometrical meaning and for- 
mation of surfaces of discontinuity from the dynamical 
field equations (16 through 20). Based on this notion, a 
model is defined here in which waves are depicted as 
surfaces of discontinuity. Once this model is defined, the 
theory on surfaces of discontinuity based on Hadamard 
(Refs. 7, 8, and 9) is introduced to present the disconti- 
nuity relations which hold across the wave surface. 

The model considered is a surface cf, (x, z, t )  = 0 in the 
medium. Two basic conditions are imposed on this sur- 
face: (1) It is required that the surface present the locus 
of possible discontinuities in the first partial derivatives 
of the dependent variables appearing in the dynamical 
field equations. The dependent variables themselves are 
assumed to be continuous everywhere, but differentiable 
only in regions which are in the rear and in the front of 
the discontinuity surface. (2) It is required that this sur- 
face of discontinuity present a wave surface in the sense 
that it affects different material particles as it moves in 
the medium. 

From these basic conditions and from the dynamical 
field equations (16 through 20), it follows that the quan- 
tities aU/ax, aU/az, aW/ax, aW/az, and aii,i across the 
wave surface CP are assumed to be discontinuous, but 
p, uii, U ,  and W are assumed to be continuous.* 

'Whenever it is convenient, Cartesian tensor notations are used in 
this report; ui, stands for the stress components usz, uZz, and u... 
The comma in the term ut,,' means partial differentiation with 
respect to x and Z. 

Before formulation of the above model is attempted, 
a digression is made to show that the conventional 
method used in the theory of characteristics (Ref. 3) can- 
not be applied here. With the conventional method, the 
characteristic equations are derived directly from the 
dynamical field equations. Hence, Eqs. (16) through (20) 
are rewritten to include parentheses around the inde- 
terminate first partial derivatives on the wave surface 
CP (x, 2, t)  = 0: 

dr i  

dW 

It can be seen from Eqs. (21) through (25) that the 
conventional method used to derive the characteristic 
equations is not applicable in this case, since the number 
of the indeterminate first partial derivatives exceeds the 
number of available equations. Therefore, rather than a 
direct treatment of Eqs. (21) through (%), which implies 
a direct dynamical analysis, it is first desired to confine 
the analysis to the kinematical conditions for the inde- 
terminate first partial derivatives across the wave surface. 

In his work on surfaces of discontinuity Hadamard 
developed kinematical conditions, which are also known 
as discontinuity relations, for the dependent variables 
and their derivatives across this surface. These analytical 
tools, based on Hadamard, are adapted here to formulate 
the proposed wave surface model. Corresponding to the 
basic conditions imposed on the surface of discontinuity, 
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the relevant Hadamard's discontinuity relations (Ref. 7) 
are written as follows: 

The derivation of the discontinuity relations expressed 
in Eq. (26) is presented here for a discontinuity [ f , i ] ,  as 
follows: It is assumed that the function f is continuous 
everywhere, but differentiable only in regions which are 
in the rear and in the front of the wave surface. In other 
words, discontinuities may occur in the first partial de- 
rivatives of the function f across the wave surface @. Two 
adjacent material particles on the wave surface @ = 0 
are considered in Fig. 3. The following relations may be 
written for the change in f :  

[ ~ i j ]  = [ U ]  [W]  = [ p ]  = O  (26) 

dfi= fi (P') - fi (P) = f ~ ,  i dxi (28) 

I [ffij, j] = 8ijnj [ ~ ]  = azn, 

[ ~ ]  = 8,n, 

[ f ,  2 1  = f ,  i 

where, if f stands for any of the dependent variables 
(Fig. 2), then [ f , ; ]  denotes the discontinuity in the first 
partial derivative across the wave surface @ (x ,  x, t )  = 0. 
The quantity [ f , J  is defined (Ref. 9) to be the value of 
the first partial derivative on the rear of the wave surface 
minus its value on the front of the wave surface, i.e., 

(27) 
value of f ,  I on front of 

- f , i  
value of f ,  i 
on rear of e 

8 i j ,  ax, 8, are arbitrary functions related to uij, U,  and W ,  
respectively, and n, and n, are the Cartesian compo- 
nents of the unit normal vector n to the wave surface @. 

- n 
DIRECTION 

OF WAVE 
dz PROPAGATION 

af - WHERE f STANDS FOR ANY 
OF THE DEPENDENT VARIABLES 8x1 on front 
u t UXZ' UZZ' of wave 

xx 

BUT 

on rear on front of 

I 

+ = O  

of wave wave I 

Fig. 2. Wave as  a surface of discontinuity 

6 

where I = the region in front of the wave surface, I1 = the 
region in the rear of the surface, and the double indices 
imply summation. The relations are valid, since the 
change in f considered here is with respect to spatial 
coordinates only. Equation (28), subtracted from Eq. (29), 
yields 

but since it is assumed here that f is continuous across 
the surface, or [ f ]  = fII - fI = 0, Eq. (30) now becomes 

or, according to definition (27), Eq. (31) may be ex- 
pressed as 

[f, i ]  dxi = 0 (32) 

Fig. 3. Surface of discontinuity 
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Furthermore, the wave surface equation at this instant 
of time is ip ( x i )  = 0 and thus, 

ip,idxi = d  4 (33) 

In view of Eqs. (32) and (33), 

where 5 = a scalar of proportionality. Multiplication and 
division of this equation by the norm of the surface ip, 

i.e., by v w -  (where the double indices mean sum- 
mation), yields: 

By letting 

(6 is another scalar), the following discontinuity relation 
of Hadamard is obtained: 

(35) 

Equation (35) was used to present Eq. (26), where ni 
are the components of a unit vector normal to the sur- 
face ip = 0 (Ref. Q), i.e., 

or 

such that 

letting 

aip 

ax 
- 

n, = 4- 
ax n, = 

n; + n; = 1 

To summarize, a wave surface is considered across 
which discontinuities may occur in the first partial deriva- 
tives of the dependent variables. For this wave surface 
model, disconti.nuity relations, based on the work of 
Hadamard, are provided. These discontinuity relations 
must now be incorporated into the dynamical field equa- 
tions so that the dynamical conditions for the indetermi- 
nate first partial derivatives can be obtained. This is done 
in Section IV, where a transformation is used for this 
purpose. 

IV. Dynamical Conditions 

Dynamical conditions for the indeterminate first par- 
tial derivatives are derived in this section. To present 
these conditions as equations which relate the indetermi- 
nate first partial derivatives in a compatible manner, a 
transformation is used by which the discontinuity rela- 
tions are applied to the dynamical field equations. 

The discontinuity relations expressed in Eqs. (26) or 
Eq. (35) are now transformed to a form in which first 
partial derivatives appear with respect to the normal of 
the wave surface. This is done in the following manner: 
The dependent variable f = f (x, z, to) (at some instant of 
time to) in the discontinuity equation (35) is now con- 
sidered to be a function of the normal to the wave sur- 
face, i.e., f = f (x, z, to), where x = x (n) and x = z (n),and 
where n is the distance measured along the normal to 
the wave surface ip. Thus, the composite function 
f (x ,  z, to) = f [ x  (n), x (n), to] exists across the wave sur- 
face. In Cartesian tensor notation, it follows that 

or (36) 

(37) 

(38) 

where it can be seen from Fig. 2 that ni = dxi/dn. Now, 
when both sides of Eq. (35) are multiplied by ni as follows, 

[ f , i ]  ni = 6nini 

(nini = 1 from Eq. 38), then 
n, = cos (n, x )  

n, = sin(n,x) 
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In view of this last expression, Eq. (39) may be re- 
written as 

6 = [ ~ ]  
Consequently, Eq. (35) is rewritten in the following form: 

or, by definition (27), Eq. (40) can further be written as 

value of f ,  a 
on rear of 0 

value of f ,  4 
on front of Q 

where the value of f , i  in front of the wave is finite and 
known from prescribed cond+tions. This is not the case, 
however, for the f, 5 on the rear of the wave surface. The 
first partial derivatives on the rear of the wave surface 
are created as the surface is being formed by the inter- 
section of its tangent elements. Therefore, the f , i  on the 
rear of the wave surface is considered here to be inde- 
terminate. In accordance with the notation for the 
indeterminate first partial derivatives used in Eqs. (21) 
through (25), the above is rewritten as follows: 

Hence, in view of relation (41), and since f stands for 
any of the dependent variables uij, U ,  and W, the follow- 
ing relations for the indeterminate first partial derivatives 
on the wave surface are written: 

The analysis done so far has been confined to kine- 
matical conditions for the indeterminate first partial 
derivatives of the dependent variables on the wave sur- 
face. These kinematical conditions, expressed in Eqs. (&), 
are now applied to dynamical field equations (21) 
through (25) to yield the following relations: 

p [ ~ ] ( n , ; i t - + n , ~ ) + [ + ] n ,  au dx dz +[%In,=,, 

+ n z g )  + [ ~ ]  n, + [%I n, = Rw 

[%] ( nx $ + n, ;is) + p [E] n, + p [z] n, = R,, 

Pz] (n, 2 + n,") dt + ,i [g] n, + ( t i  + 2p) PZ] - n, = R,, 

[%](n.;i l+ dx n , X )  dz + ,i [ Z ] n ,  + + 2 p ) [ g ]  n, = R,, 

\ 
p [E] (nx I 

dz 
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where 

dw R,=p=-p 

Let 

dx dn G=n,-+n,- dt dt 

which is recognized as the common term in the system of Eqs. (43) and (44). Therefore, Eqs. (43) become 

PG[$]  + [$Inz + [ ~ ]  n, = R,  

PG [z] + [%I n, + [ ~ ]  n, = R, 

G [%] + p [z] n, + P [ ~ ]  n, = R,, 

G [ ~ ]  + [$] n, + (A + 2 p )  [ - ~~1 n, = R,, 

G [ ~ ]  + A [z] n, + (A + 2,) [g] n, = R, 

Rewriting Eqs. (46) in matrix form gives 

(45) 
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Hence, Eqs. (47) present a system of five equations which 
relate five first partial derivatives 

[XI. au [a,]. aw [$I, [ ~ ] ,  and [ ~ ]  

of the five dependent variables U, W ,  uZZ, u,,, and uXx. 
The system of differential equations (47) is then denoted 
as the dynamical conditions, since it is from these rela- 
tions that the wave surfaces and the characteristic equa- 
tions will be derived. 

In order to derive the wave surfaces and then the 
characteristic equations which hold on these surfaces 
from the dynamical conditions, the following conven- 
tional approach (Ref. 3) is attempted. To solve any of 
the unknowns, say [aU/an],  in Eq. (47), a ratio is needed 
whose denominator is the determinant of the coacients 
and whose numerator is the determinant, where the de- 
terminant’s first column is replaced by the right-hand 
column of Eq. (47). However, since it is required that 
[aU/an] be discontinuous, the denominator is made to 
vanish. Furthermore, since it was established that this 
discontinuity takes place across the wave surface, it can 
be concluded that by equating the denominator to zero, 
the wave surface can be determined. Therefore, the de- 
terminant of the co&cients when equated to zero is 
denoted as the characteristic condition. On the other 
hand, it is also required that the discontinuities be related 
in order to define the tangent elements (see Section 11) 
of the wave surface. This relatedness is established when 
the numerator is also made to vanish. The numerator, 
which is equated to zero, and the equations for the char- 
acteristic surfaces will yield the characteristic equations. 

In view of the above description of the dynamical 
conditions, steps are taken to determine (1) the wave 
surface (or surfaces) from the characteristic condition and 
the generators of the surfaces, which are the bicharacter- 
istic curves (Section V) and (2) the characteristic equa- 
tion (or equations) which hold along the bicharacteristic 
curves (Section VI). 

V. Characteristic Condition and 
Bicharacteristic Curves 

Once the dynamical conditions for the indeterminate 
first partial derivatives have been established, the wave 
surfaces can be determined from the characteristic con- 
dition. The bicharacteristic curves are then derived from 
these characteristic surfaces. 

10 

The determinant of the co&cients of matrix (47) is 
equated to zero in order to establish the characteristic 
condition, i.e., 

= 0 (48) 

The determinant is expanded to yield the following 
equation: 

The solution to this equation yields five distinct and real 
roots : 

G, = p- 
P 

G 4 = - , / :  

G, = 0 (54) 

In order to interpret the meaning of these roots, a wave 
velocity g is defined as follows: Let CD be the wave sur- 
face, and let a material particle P be on this surface at 
time t .  At time t + dt, the normal n at P to CI, ( t )  win 
intersect the same wave surface at a different material 
particle P’ (Fig. 4). Hence, the velocity g of the wave 
surface CD at P at the instant t is defbed to be 

2 

PP‘ g = -  
dt 
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BICHARACTERISTICS 
ORTHOGONAL 
TRAJECTORIES OR 
GENERATORS OF 
THE CONE 

WAVE SURFACE 

, I, t,) = CONST 
OR Z, t2) = CONST 
(dx)’+ (dz)’ = G2 dt2 

I, tq) = CONST 
Z, t S )  = CONST 

+ (x, 2, t) = 0 

\ $(t +dt) 

Fig. 4. Wave surface 

or the wave surface speed is 

dn 
g = x  (55) 

where it is apparent from Fig. 4 and Eq. (38) that dn 
may be presented by vector addition as 

dn = Gdx + n,dz 

or 

dx dz 
g = n,- + n,- dt dt 

n / dx = G cos 0 dt 

n / dx = G cos 0 dt 
dz = G sin 8 dt 

THE BICHARACTER IST ICs 
ARE FORMED BY THE 
INTERSECTION OF THE 
SURFACE $(x, z, t) = 0 
WITH THE SHEAF OF 
PLANES PASSING THROUGH 
THE t-AXIS 

Fig. 5. Typical wave surface 

examining Eq. (57) in Fig. 6, and may be presented as 
follows: 

This expression is identical to the relation expressed in 
Eq. (45). Therefore, it is clear that G is identical to g, 
which is the propagation speed of the wave surface. This 
is also consistent with the dimensions of G (Eqs. 50 
through 53). Furthermore, from Fig. 4, it is also apparent 
that 

Or 

dx= Gcosedt 

dz = Gsinedt 
(58) 

dx = Gn,dt 

(dn)2 = (d@ + (dzp dz = Gn,dt 

The next task is to derive the characteristic equations 
which relate the dependent variables along these bichar- 
acteristic curves. Before this is done, however, some con- 
elusions should be reached concerning the dynamical 
nature of the obtained wave speeds as expressed in 
Eqs. (50) through (54). 

or, in view of definition (55), that 

(dxy + (dz)2 = G2 (dt)2 (57) 

Equation (57) defines the Monge cone (Ref. 10) (see 
Figs. 1 and 5). Each wave surface through the apex of 
this cone touches the cone along the bicharacteristic 
curves. The bicharacteristic curves are easiIy found by 

First, the nature of Eq. (54) (i.e., G, =0) will be 
examined. For this purpose, the equations of motion, 
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I 
I 
I 
I 
I 
I 

Fig. 6. Representation of Eq. (571 

Eqs. (16) and (17), are rewritten for the wave surface, in 
which case they include the discontinuity notations and 
the relations dxldt = Gn, and dz/dt = Gn, (see Fig. 4). 

[$I+ [$] = - p G [ g ] n ,  - p G [ g ] n ,  + p[g] 
[ ~ ] +  [ ~ ]  = - p G [ ~ ] n ,  - p G [ ~ ] n ,  + p[T] 
Obviously, since U and W are assumed to be continuous 
across the wave surface, 

[+[TI = o  

When zero is substituted for G in the above equations, 
it can be seen that this root represents a front where static 
deformation takes place. 

In order to interpret the significance of the roots 
G2 = (A + 2p)/p and G2 = p /p ,  the discontinuity rela- 
tions (26) are applied to Eqs. (16) through (20), which 
are combined to yield the following two relations: 

When h + 2p/p is substituted for G2 in Eqs. (59), the 
following features are obtained: 

These relations imply that the vector 6 is parallel to vec- 
tor n, or that the material particle at the wave surface 
moves parallel to the propagating wave. Also, the linear- 
ized vorticity at the wave surface is 

In view of Eqs. (26), 

[ g] - [ z] = a,n, - Szn, 

but as a result of the relations (60), the vorticity at the 
wave surface vanishes. A wave characterized by these 
features is known as the longitudinal wave, which propa- 
gates with speeds expressed in Eqs. (50) and (51); GI 
and G2 are now replaced by the notations G; and Gi, 
respectively, where the subscript L refers to longitudinal 
waves. This observation, as well as the following one, 
is a restatement of T. Y. Thomas’ observation (Ref. 11). 

The substitution of p / p  into Eq. (53) yields the fol- 
lowing relation: 

n,S, + n,S, = 0 (61) 

which implies that 

au aw 
ax az + - = O  - 

Thus, the dilatation at the wave vanishes. Also, on the 
basis of relations (59), the term n,S, + n,S, represents a 
scalar, which may be written as a dot product. In con- 
junction with relation (61), this term becomes n-S = 0. 
A wave consisting of these features is known as the shear 
wave, which propagates with the speeds expressed in 
Eqs. (52) and (53). The speeds G, and G, are now re- 
placed by the notations G; and G;, respectively, where 
the subscript S refers to shear waves. 

Thus far, the wave surfaces, their speeds of propaga- 
tion, and their bicharacteristic curves have been estab- 
lished. In Section VI, the characteristic equations which 
hold along the bicharacteristic curves and on the wave 
surfaces will be derived. 
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VI. Cartesian Characteristic Equations 

In this section, the characteristic equations are derived 
from the dynamical conditions. As was described in Sec- 
tion IV, the procedure used to obtain the characteristic 
equations is as follows: Each column in the d c i e n t  
determinant of Eq. (48) is replaced consecutively by 
the column on the right-hand side. The determinant is 
then made to vanish for each such replacement. The 
expansion of the determinant yields the desired relation. 
To demonstrate this operation, for example for [aU/an], 
it follows that 

Upon expansion of this determinant, the following rela- 
tion is obtained for [aU/an]: 

R,, (A + p )  nxn; - RwG (A + p )  nxnz 

+ R,,nx [pG2 - p - (A + PFC) 

- RUG [pG2 - p - ( A  + p )  nil 
+ Rxznz [pGz + Ani - ( A  + 2,) n:] = 0 (63) 

The following equations are obtained similarly: 
For Ea~~,/anl, 

R,n: [ - pG2A + Apn: - p (A + 2,) 4 
- RwGnz [ -pG2A + Apn: - p ( A  + 2,) mi] 
+ R, {pG2 [ -pG2 + p + (A + 2,) n:] 

+ p n ; [ A ? g - ( ( x + 2 p ) n : ] )  

+ 2R, ( A  + p )  nxnz ( - pG2 + 2p@) = 0 

- RUGnx [ ( A  + 2,) ( -pG2 + p )  + 2p (A p )  

(64) 

For [aW/an], 

Rzzpnxnz [ -pGZ - An$ + ( A  + 2,) n;] 

- RwGpn, [ -pG2 - An: + ( A  + 2p) n;] 

+ Rxxpnxnz [ -pG2 - An2 + (A + 2 p )  n:] 

- R,Gpn,- [ - pGZ - An; + ( A  + 2,) n:] 

+ Rxz {pG2 

- 4p(A + p ) & z : }  = 0 

+ (A + % ) I  
(67) 

The characteristic surfaces as expressed in relations (50) 
through (54) are substituted for G in Eqs. (63) through 
(67). The result is five distinct characteristic equations 
which relate the five dependent variables azo, uzz, uzzr U, 
and W along the bicharacteristic curves expressed in 
Eq. (58). These characteristic equations are: 

nZRzz + n;Rxx + 2nXn,R,, - G', (nzRw + nxRU) = 0 
(68) 

along 

dx = G+L nxdt 

dx, = G+L n,dt 

where 

niRzz + nzRxx + 2nxnzRxz - GL (n,Rw + nxRu) = 0 
(69) 

along 

dx = G-,n& 

dz = G-,nzdt 
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where Vil. Cylindrical Characteristic Equations 
This section is presented in order to accommodate 

many practical problems in which the cylindrical coordi- 
nate system is advantageous. A system of five differential 
equations which relate the five unknown functions urT, 

wee, U T e ,  UT, and Ue along the bicharacteristic curves is 
to be derived here. The principles of the theory and the 
derivations are analogous to the analysis used to derive 
Eqs. (68) through (72), and reference should be made 
to the preceding sections. 

Gi=-+FF 
nxn, (R,, - Rxx) + (1 - 2nZ) E,, - G', (nxRw - n,RU) = 0 

(70) 
along 

dx = Gin& 

dz = G',n,dt 

where 

n,n, (Rz, - R,) + (1 - 2n3 R ,  - Gi (nxRw - n,Rcr) = 0 

(71) 
along 

dx = Ggn,dt 

dz = G,n,dt 

where 

The equations of motion for linear elastic material, 
where plane strain is prevalent, are 

(74) 

where 

p = density 

u,. and ue = radial and tangential displacements, 
respectively 

uTT7 uee, and = stress components in the r, &plane 

r and'e = plane cylindrical coordinates 

[ A 6  - (A + 2p) nZ1 Rxz + [ in;  - (A + 2,) 61 R,, t = the time dimension 
+ 4nxnz (A + p) R,, = 0 (72) 

The stress-displacement relations are for 

G = O  

along 

dx=O ' 

dz = O  

(76) where the R are expressed in Eqs. (44) when 

n, dx/dt + n, dz/dt  

is replaced by the relevant G. where p and = Lamgs constants. Let 

Boundary-value problems can now be solved by em- 
ploying the characteristic equations (68) through (72), as 
will be demonstrated later. Section VI1 is devoted to the 
derivation of the characteristic equations in the cylin- 
drical coordinate system. 

auT 
at 

aue 
a t  

-- - UT 

U ,  -= 

(77) 
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where UT and U ,  = the radial and tangential velocities, 
respectively, and, upon differentiation of Eqs. 75, 76, 
and 77 with respect to time, Eqs. (73) through (77) 
become 

Also, the region in the physical space ( x , x , ~ )  is con- 
sidered where the five dependent variables are continu- 
ous and differentiable. For this region, the following 
relations exist: 

(83) 
du, au,dr aU,de aU, -- +--+- dt ar dt ae dt at 
-- - 

due aU,dr i3Ued6 aUe 
-- - -- +--+- dt ar dt ae dt  at 

durr aurr dr au,,de aurr +--+- dt - i3r dt ae dt a t  
-- -- (85) 

(87) 
dare aare dr sure de a,,, +--+- dt ar dt a6 dt at 
-- 

By the same argument used to derive Eq. (41), it follows 

where, in the case of cylindrical coordinate system, the 
components of the unit vector normal to the wave sur- 
face @ are n, and ne, which are defined to be 

acp 
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such that where 

and let 

n, = cos 9 

ne - =sine r 

(91) 

Analogous to Eqs. (46) and in view of Eqs. (78) 
through (88), the following system of five differential 
equations with the five unknowns 

[%I, [ ~ ] ,  [I], [$I, and [%] 
is obtained: 

n, [$] + 5 [%I + p~ [$I 

'[e] T + n,. [$] + p~ [ ~ ]  

-- AUT + R,, - - 
Q 

G [ ~ ]  + An, [%I + (x + 2,) [ z] 
= - (A + Zp) 7 U T  + Roo 

(93) 

1 auoo aura 
T as  ar 

_ _ - _ -  

1 a@,, 
~2 ae n, + - - no R,, = - - dt 

au, A a v o  - ( A  +2p)-- -- 
ar T ae 

and where 

dr dB 
G = n , - + n o z  dt 

(94) 

(95) 

By the same steps as for the Cartesian coordinate sys- 
tem, the following five characteristics are obtained: 

G, = 2 
G * = - $  

(97) 
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which are identical to Eqs. (50) through (54). The bi- 
characteristic curves may be found simply by transferring 
Eq. (57) into cylindrical coordinates, as follows: 

along 

de ne -= 
dt GL- T2 

where 

+ +[(* + 2 . 3  UT - - 2nrn, T pU.1 

thus, along 

dr -- - -GLnr 
dt 

ne 
- -GL- 

dB 
dt T2 
-- Equation (57) now becomes 

(dr)2 + r2 (de)2 = G2(dt)2 

and the bicharacteristic curves are 

dr = Gcos 0 dt 

rde = Gsinedt 

or 

dr = n,Gdt 

ne dB=-Gdt 
T2 

along 
(103) 

Now, following steps similar to those described in Sec- 
tion VI, one obtains the desired five characteristio equa- 
tions along the bicharacteristics: 
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along 

dr -- - - Gsn, dt 

de ne 
dt r2 
- = -Gs- 

L 

along 

where 

dr = 0 

de = 0 

equations accommodate more complex cases encountered 
in one-spatial dimensional wave problems. Finally, two- 
spatial dimensional problems which lend themselves to 
the derived equations are indicated. 

A. A Known One-Spatial Dimensional Problem 

Before the applications of the derived characteristic 
equations are discussed, a known one-spatial dimensional 
problem is considered in order to measure the validity 
of these equations. The problem consists of a cirmlar 
cylindrical cavity in an infinite elastic solid subjected to 
a uniform radial load applied to the cavity wall (Fig. 7). 

and where the R are expressed in Eqs. (94) when the 
relevant G is inserted in these equations. 

With the availability of the derived Cartesian charac- 
teristic equations (68) through (72) and the cylindrical 
characteristic equations (104) through (log), two-spatial 
dimensional wave-propagation problems can be analyzed. 
Such problems are discussed in Section VIII, and two 
problems are solved in Section IX. 

VIII. Indicated Applicutions of the Derived 
Characteristic Equations 

The purpose of this section is to indicate the applica- 
tions of the derived characteristic equations to a wide 
range of boundary-value problems. First, as a measure 
of validity, the derived two-spatial dimensional charac- 
teristic equations are shown upon reduction to contain 
the known one-spatial dimensional form. It  is then shown 
that the derived two-spatial dimensional characteristic 

Fig. 7. Circular cylindrical cavity in an infinite 
elastic solid subjected to a uniform radial 

load applied to cavity wall 

It is readily seen that the unknown dependent variables 
involved here are urr, ne, and Ur(ure = Ue = 0), which 
are the functions of r only. %us, from Eqs. (89), (go), 
and (91), it is seen that ne = 0 and nr = 1. Also, from 
Eq. (59), when x and z are replaced by r and 8, it is seen 
that the only possible G are G; = & [(A + 2 p ) / p ] %  It 
follows from Eqs. (104) through (109) that the character- 
istic equations for this problem are 
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along dr/dt = GL, where 

(111) 
4 p @ + p ) U r  dt 

~ + 2 p  T doe, --I -- - 
duee ~ [ l -  x 

along dr = 0, which are indeed Eqs. (18) and (19) (p. 161) 
in Chou and Koenig's paper (Ref. 4). Also, it can be 
shown that Eqs. (68) through (72) contain, upon reduc- 
tion, known one-spatial dimensional cases that require 
Cartesian characteristic equations. 

Fig. 8. Uniform plane oblique load applied 
on a half-space 

along 

8. A Uniform Plane Oblique load Applied on 
a Half-space 

This problem consists of an elastic half-space subjected 
to a uniform plane oblique load (Fig. 8). Although the 
problem is a one-spatial dimensional one, it may be con- 
sidered a step toward a strictly two-spatial dimensional 
problem in the sense of having two kinds of waves and 

pendent variables are uxx, uZz, vEz, U ,  and W, which are 
functions of z only. It can readily be seen that a shear 
wave and a longitudinal wave will be generated here. 
In view of these observations, the characteristic equa- 
tions (68) through (72) will immediately be reduced to 
the following: 

d u x z + p E d U = O  

along 

five unknown dependent variables. The unknown de- "=-$ 
dt 

and 

(116) 
h 

a,, = - x 3- 2 p  

along 

along 

and now the numerical evaluations are possible. 

duzz- p . , / F d W = O  (112) 
C. A Circular Cylindrical Cavity Subjected to a Uniform 

Radial load and a Uniform Tangential load 

This problem consists of a circular cylindrical cavity, 
in an infinite elastic solid, subjected simultaneously to a 
uniform radial load and a uniform tangential load applied 
to the cavity wall (Fig. 9). Like the preceding example, 
this is also a one-spatial dimensional problem. It can be 
seen that the five unknown dependent variables u,,, s e e ,  

q re ,  U,, and Ue involved are functions of P only. TWO 
kinds of waves exist here also, namely, a shear wave and 
a longitudinal wave. In view of these observations, 
Eqs. (104) through (109) are reduced to the following 
characteristic equations: 

!$=JT 
d u z z + p ~ ~ d W = O  (113) 

at 
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along 

dr = 0 

where 

Fig. 9. Circular cylindrical cavity subjected to a uniform 
radial load and a uniform tangential load 

along 

dr - = GL dt 

along 

dr -=  -GL 
dt 

along 

dr _ -  
dt - Gs 

along 

dr - = -Gs 
dt 

With Eqs. (117) through (122), the numerical evaluation 
is now possible. 

D. A line load Applied on a Half-space 

This problem also contains five dependent variables 
and two kinds of waves (see Fig. 15). However, the 
dependent variables here are functions of two-spatial 
dimensions. Equations (68) through (72) include all their 
terms. H. Lamb (Ref. 12) was the first to deal with the 
problem, which, in the past, has been treated by the 
transform techniques. A summary of work by other inves- 
tigators who use the transform techniques is presented 
in Ref. 1 (pp. 214-231). In Section IX of this report, the 
problem is treated by the theory of characteristics. 

E. A Circular Cylindrical Cavity Subjected to a line load 

Miklowitz (Ref. 13) solved this problem by the trans- 
form techniques. When treated by the theory of charac- 
teristics, the problem seems to lend itself to the cylindrical 
characteristics equations (104) through (109). 

IX. Solutions to Specific Boundary-Value 
Problems 

Based on the problems suggested in Section VIII, two 
boundary-value problems are solved here. The derived 
characteristic equations are applied to the numerical 
evaluation of these two representative problems. 

The h s t  problem consists of an infinite elastic flat plate 
impacted by a uniform plane oblique load. The second 
problem deals with an elastic half-space impacted by a 
line load. In both cases, the load is applied abruptly to 
the solids. Consequently, discontinuities may occur in the 
dependent variables themselves across the leading wave 
front (the first generated wave surface) (Ref. 4). The 
characteristic equations, however, were derived for con- 
ditions under which discontinuities are allowed only in 
the first partial derivatives of the dependent variables. 
Therefore, the characteristic equations are reworked here 
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to accommodate the leading wave front. Once the de- 
pendent variables are computed along the leading wave 
front, the rest of the solution domain can be evaluated 
numerically by direct employment of the appropriate 
derived characteristic equations (Eqs. 68 through 72’ or 
104 through 108). In cases in which the load is applied 
gradually, rather than abruptly, the characteristic equa- 
tions can be applied directly to the entire solution domain. 

A. A Uniform Plane Oblique load Suddenly Applied on 
an Infinite Flat Plate 

A detailed solution to a specific problem, similar to the 
outlined example discussed in Section VIII, is solved 
here. 

A bounded half-space is impacted by step normal and 
tangential velocities, as described in Figs. 10 and 11 and 
Eq. (123). This combined step load is uniformly dis- 
tributed over the surface z = 0. 

_ _  1 w h e n ~ 1 0  i OwhenT<O 
u,w= (123) 

- _  
where U ,  W, and T are dimensionless quantities: 

and 

uxx - -  
uxx - - h + 2p 

- %I 
a,, = ~ 

h + 2p 
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Fig. 10. Bounded half-space 

Fig. 1 1 .  Step normal and tangential velocities 

This problem may simulate, for example, an impact land- 
ing of an infinite flat plate on a rigid target at rest 
(Fig. 12ay. For the convenience of having zero initial 
conditions, an oblique velocity V, such that V = W + U, 
is added to the whole system (Fig. 12b). This implies 
that the motion is relative to the initial steady motion 
of the plate. 

It follows that at T = 0, the rigid target is suddenly 
impacting on the plate, and in this instant (T = 0), the 
plate and the target are at rest. Since the given actual 
velocity of the plate is constant, the added constant 
velocity will not affect the emanating stress waves. 

The following analysis is done by using the Lagrangian 
viewpoint; i.e., an observer is assigned to the origin of 
the coordinate system at the impact face of the plate 
( z  = 0). The observer fixes his attention on a specific par- 
ticle in the plate at time zero, when the plate is still at 
rest and therefore unstrained. This implies that the 
stresses will be measured from the initial unstrained 
condition. 
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- -  
tions (&, OXx, U, W) along the bicharacteristic curves are 
(in dimensionless form): 

(127) 
& 
dr along - = 1 dexx - dF = 0 

- 
Ge - dz GS 

dr GL along- = - dZxx - -dU = 0 
GL 

(130) 
z GS along - = - - 
dr GL 

GS - dGxx + -dU = 0 
GL 

also 

a. UNSTEADY MOTION 
OF THE PLATE 

(131) 
- v -  
oxx = zvv = - o x x  

where v is Poisson’s ratio, which was chosen for this 
example to be equal to 0.25. Hence, Eqs. (127) through 
(131) become, after bars have been dropped, 

1 - v  

<+ 
2 

(132) 
dz 

along - = 1 dr 

dz 
along - = -1 dr 

dz 1 

dux, - dW = 0 

(133) 

(134) 

do,, + dW = 0 
b. STEADY MOTION 

OF THE PLATE 

along - = -- 
1 do,, - -dU = 0 fl dr 6 3  

V 

Fig. 12. Infinite flat plate landing on a rigid target 

dz 1 
along - = - - (135) 

1 de,, + - d U = 0 
G?r fl fl 

The initial conditions are then 

and the boundary conditions are 

To evaluate the dependent variables in the solution 
domain numerically, it is first necessary to compute them 
along the leading wave front. Because of the abrupt load, 
discontinuities may occur in the dependent variables 
along the leading wave front. Therefore, the characteristic 
equation (132), which holds along the first bicharacteristic 
curve z = T ,  has to be reformulated to accommodate the 
discontinuities in the variables themselves. Thus, in view 

(126) for r > 0 
- 
V =  f l a t Z = O  

ui j=O a t X = l  - 

In accordance with the discussion in Section VI11 and 
Eqs. (112) through (116), the following four ordinary dif- 
ferential equations which relate the four unknown func- 
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of definition (27), Eq. (132), and Fig. 12, the following EADING WAVE FRONT (z = T ) 

relation exists for point P on the leading wave front: 

d [azz] - d [W] 0 (138) 

Equation (138) is now integrated as the bicharacteristic 
curve z - T = constant approaches the leading wave 
front z - T = 0, i.e., 

LOAD APPLIED 
ABRUPTLY 

= - T +CONSTANT HERE 

[azzl - [WI = K (139) z 

Fig. 13. Discontinuity in the dependent variables 
across the leading wave front where K is the constant of integration. Since the material 

is at rest in front of the leading wave, 

and Eq. (139) is rewritten as 

Equations (134) and (135) are treated similarly. Fig- 
ures 14, 15, and 16 represent the stress and velocity dis- 
tribution obtained in the xz-plane. 

B. A Line Load Suddenly Applied on a Half-space 

The disturbance generated in a semi-infinite elastic 
medium by an impulsive load applied along an infinite 
line is considered here (See Refs. 1 and 12 for previous 
treatments of this problem by other methods.) The load 
is applied along the line x = 0, z = 0 in the z-direction 
(Figs. 17 and 18). The objective here is to determine the 
deformation which takes place on the surface of the half- 
space at the leading wave front. All the variables involved 
are in the dimensionless form expressed in identities (124), 
and Y = 0.25. Hence, the only applied load is 

czzp rear - WP,,,, = K (140) 

On the other hand, the characteristic equation (133) 
L which holds along the bicharacteristic curve z = -7 + 

constant may be used as it stands for point P ,  since there 
are no abrupt changes across z = - T  + constant. Thus, 
the following relation exists: 

daxz + dW = 0 along z = - T  + constant 

or, by the finite difference method (Ref. 12), 
where 

- a z ~ p  ) + (Wprear - WPfront) = 0 (141) 1 = concentrated load per unit length 
(UZXPrear front 

A (x) = Dirac delta function (Ref. 1) . ,  - Again, since u - WPfront = 0, relation (141) is 
written as 

ZZPfront H ( T )  = Heaviside's unit step function (see Fig. 17) 

In view of relations (140) and (142), it is concluded that 
azzp and W.,,,, remain constant along the leading 
wave front. Now, since the applied load at the origin 
(z = 0, T > 0) is W = 1, it follows from Eq. (142) that 
azz = -1 at the origin. It follows immediately that 
azz and W are equal to -1 and 1, respectively, along 
the leading wave front (azzp = -1 and Wp = 1) until 
the wave front reaches the boundary z = 1 (Fig. 13). The 
above analysis is then repeated for the reflected wave. 

rear 

In order to evaluate the dependent variables for a 
material particle at a point P ( x , O , r )  on a free surface, 
a scheme is suggested which is depicted by Fig. 19. This 
scheme consists of rectangular (e = Oo and 8 = 90") bi- 
characteristic curves (see Fig. 5)  which initiate at points 
A, B, D, E, F, M, and Q in the plane T - AT and termi- 
nate in the point P ( x , O , T ) .  The dependent variables of 
the materid particles at points in the T - AT plane are 
known from initial prescribed conditions or from previous 
calculations. From these known points in the I - AT 
plane, P (x, 0, T )  generally is evaluated by the finite dif- 
ference method (Ref. 14). 
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Fig. 14. Bicharacteristic grid 
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OZZ 
A(x - Ax, 0, T - AT) 

BICHARACTJR IST IC 
CURVES AP, BP, DP 

r BELONG T Y  THE G, 
CONE (dx) + ( d ~ ) ~  = A 

P(x, 0, T )  (dr)’. 

Fig. 19. Scheme to evaluate point P ( x ,  0, r )  

I 
I T 

0 

Fig. 17. Heaviside’s unit step function 

QZZ 

Fig. 18. line load suddenly applied on a half-space 

In view of Fig. 19, and from the Cartesian character- 
istic equations (68) through (72), the following relations 
are obtained: 

For bicharacteristic curves 

A P ( 8  = 00) 

dx 
along - = 1 dr 

dn - E o  
dr 

B P ( 8  = 00) 

dx  
along- = -1 dr 

Dp ( e  = 900) 

a longd dx = 0 

dz - = -1 
dr 

E P ( 8  = 00) 

dx  1 along - = - fi 
dn 
L- - 0  dr 
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F p  (e = 00) 

(147) 
1 

v 3  do,, + (-- dw = 

ax 1 along - = - - 
dr v3 
dz = O  

MP (e = 900) 

For lines 

QP (e  = 00) 

dx 
along - = 0 dr 

a7 8 aW doxx - 3do,, = - -- 3 ax (149) 

along dx = dz = 0 

QP (e = 900) 

3doxx - do,, = -- dr 3 ax 
along dx = dx = 0 

@ ( e  = Oo and e = 900) 

along dx = dz = 0 

It is desired here to evaluate the dependent variables 
on the surface of the half-space x = 0 at the leading wave 
front. For this purpose, the characteristic equation (143) 
is considered first. Because of the abrupt load, Eq. (143) 
is treated in a similar fashion as the preceding problem; 
i.e., it is written as follows (dr is replaced by dx): 

Across the characteristic equation (144) which holds along 
dr = -dx, there is no abrupt change in the dependent 
variables, and therefore this equation may be used as it 

stands. However, as Ptront approaches Prear when dcc+ 0 
(as in Fig. 13), the following relation exists (Ref. 4): 

Since Pfront + Prear, the right-hand side of this equation 
vanishes, and the following relation exists: 

or 

(153) 

In view of Eq. (153), Eq. (152) becomes 

The first partial derivatives on the right-hand side of 
Eq. (154) are discontinuous derivatives of discontinuous 
dependent variables. Therefore, these first partial deriva- 
tives depend on the shape of the wave surface across- 
which the dependent variables are discontinuous. Con- 
sequently, these are covariant derivatives (Ref. 15). The 
shape of the wave surface in the xx-plane for an arbi- 
trary time was found to be a circular cylinder (see Fig. 6). 
Since [a,,] = 0 on the free surface, it follows that the 
covariant derivatives of the right-hand side of Eq. (154) 
are 

r 1 l(~).o.ariant differentiation 1 = [ ~ ]  + ? (155) 

and 

T (156) 
covariant 
differentiation 

or, by relations (26), 

[Ul 
[(z)covariant 1 = s,n, + - T 

differentiation 

ldifferentiat ion 
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But since the analysis in this case is confined to 0 = Oo 
(see Figs. 5 and 19), it follows that n,=O and r = x .  
Equation (154) is now written as follows: 

In view of Eq. (153), the above equation is written as 

or 

(157) 

Integration of this ordinary differential equation leads to 
the following expression for uEE 

(158) = e 2 1 3  
for,%=0,5,0 
at  leading 

uxx I wax-e front 

'where the constant K is taken to be equal to the initial 
applied load. Equation (158) becomes 

and, in view of Eq. (153), 

From symmetry, 

Inspection of any of the characteristic equations (145, 
146, and 147) shows that when x > 0, 

o n s = o , x > o  = O  
leading wave. 

X. Summary 

A method has been established by which differential 
equations are derived governing the propagation of 'dis- 
continuities along the bicharacteristic curves. These dif- 
ferential equations were denoted in this report as the 
characteristic equations. 

The characteristic equations were derived with refer- 
ence first to Cartesian and then to cylindrical coordinate 
systems for a linear elastic, isotropic, and homogeneous 
material where plane deformation is prevalent. The ap- 
plicability of these equations is confined to cases in 
which discontinuities may occur in the derivatives of 
the velocities and stresses, while these variables remain 
continuous. 

The derived characteristic equations for two-spatial di- 
mensions were shown to be applicable equally well to 
one-spatial dimensional wave problems. 

Two boundary-value problems were solved using the 
derived characteristic equations. The first consisted of a 
uniform plane oblique load suddenly applied on an 
infinite flat plate. Velocities and stresses were obtained 
for the entire spatial solution domain. The second prob- 
lem consisted of a line load suddenly applied on a half- 
space. Velocities and stresses were obtained on the 
surface of the half-space at the leading wave front. In 
both problems, special derivations were made in order 
to account for possible discontinuities in velocities and 
stresses across the leading wave front due to the abruptly 
applied load. 
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